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Feynman has described a chessboard model for a one-dimensional relativistic 
quantum problem which yields the correct kernel for a free sp in- l /2  particle 
moving in one spatial dimension. This chessboard problem can be solved as an 
Ising model, using the transfer matrix technique of statistical mechanics. The 
2 • 2 transfer matrix represents the infinitesimal time evolution operator for the 
two eigenstates of the velocity operator. 

Feynman and Hibbs (1965) have described a chessboard model for a 
one-dimensional relativistic quantum problem which yields the correct 
kernel for a free spin-l/2 particle moving in one spatial dimension. In this 
model, the particle's motion is restricted to be either forward or backward at 
the velocity of light. In the system of units for which h = m = c =  1, trajecto- 
ries of such a particle in the z, t plane are straight fines with slopes of --+45 ~ 
(bishop's moves in chess) as shown in Figure 1. The probability amplitude K 
for starting at Zat  a and ending at Zbt b is defined by dividing time into equal 
steps of length e, with path reversals supposed to occur only at the 
boundaries of the steps, that is, at times t=t~ +ne, n being an integer. The 
amplitude q, to go from z~t~ to Zbt b along one jagged path with R corners 
such as shown in Figure 1 is defined as 

q~=(--ie) R (1) 

which differs from that given in Feynman and Hibbs (1965) only by 
replacing Feynman's ie by - i e .  This replacement is apparently necessary to 
get the correct nonrelativistic limit [see remarks after equation (35)]. 

The kernel K is obtained by multiplying the probability amplitude 4' for 
a path with R corners by N(R) ,  the number of paths possible with R 
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Fig. 1. A relativistic particle trajectory on the chessboard and the equivalent Ising spin system. 
The number of path segments equals the number of spins, N= 17, with M+, the number of 
paths to the right equal to the number of + spins equal to 12, and M_, the number of paths to 
the left equal to the number of - spins equal to 5. The number of corners in the trajectory is 
R=7, the same as the number of (+ - )  spin boundaries. 

corners, 

K ( z  b - z  a, t b - - t a ) :  ~ N ( R ) ( - - i e )  R (2) 

The evaluation of K, left as a problem for the reader of Feynman and Hibbs 
(1965), apparently involves the combinatorial problem of enumerating 
values N(R).  Although solvable, calculating K from such a counting scheme 
is a bit tedious, and not very illuminating. 

It  is the purpose of this paper to show that the kernel K of equation (2) 
can be calculated analytically in closed form by establishing a correspon- 
dence betwen the above chessboard problem and the one-dimensional Ising 
model. Results for K obtained in this way are shown to be equivalent to the 
Dirac equation. 

Involved in the chessboard problem is a total number  of steps N 
determined by the time interval t b - t a  and the length e of each step, 

N e - - : t  b - - t  a (3) 

If  N+ (N_)  are the number of steps to the right (left), N = N +  + N _ ,  then 
their difference, M = N + - N _  is determined by the space interval z b =za ,  

z b --z~ -:Me (4) 
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Now consider a system of N spins, %, 0 2 .... , oN, each of which can take on 
the values --+ 1. Associate o i with the ith chessboard step, oi = + 1 denoting a 
step to the fight and o i = -  1 a step to the left. Then M = N + -  N_ in the 
chessboard problem becomes the magnetization M =  Y.~o~ for the spin prob- 
lem. The total number of spins N, determined according to equation (3), by 
the time interval t b - -  t a in units of the basic length e is a large number, while 
the magnetization M determined by the interval z b - z a ,  given by equation 
(4), is again a large number. A corner in the jagged path of a particle in the 
zt plane corresponds to a boundary between oppositely directed neighboring 
spins. This equivalence is indicated in Figure 1, for a specific choice of M 
and N. 

For a given spin configuration, the number of corners R (number of 
adjacent +spins) is measured by 

N - I  

R = ( 1 / 2 )  ~ ( l -o iOi+l)  (5) 
1 

We can manufacture a partition function ~(N,  M, j )  for the spin system in 
thermal equilibrium which is exactly equivalent to the kernel K of equation 
(2) by assuming a nearest-neighbor ferromagnetic energy J so that every 
spin reversal boundary (corner) has the Boltzmann factor e -2j, j = J / k T ,  
with the zero of energy taken as the fully aligned ( M = N )  ferromagnetic 
state (R---0). Then the partition function for N spins with fixed magnetiza- 
tion M is 

~ ( N ,  M, j ) =  E N ( R ) ( e - Z J )  R (6) 
R 

with N(R) ,  the number of spin configurations having R oppositely aligned 
adjacent spins, the same combinatorial number as in equation (2) for the 
chessboard problem. The partition function ~ of equation (6) is identical to 
the kernel K of equation (2) if we set (finally) e - Z J = - - i e ,  and recall 
N = ( t b = t a ) l / e ,  M = (z b -- z~ )/e. An alternative, potentially more useful form 
of ~ is obtained by recognizing that summing N ( R )  over all R for fixed M 
gives all points (o l, 02,..., ON), o i = ----- 1 which lie on the plane 1~o i =M,  or 
~RN(R)=]~o,=+_I...Y~ou=+_z(1 ). With Y~o i = M  then replacing R in equa- 
tion (6) by equation (5), the partition function can also be written as 

N--1 

~ ( N , M , j ) =  ~, ~ "'" E eJ ~ (~ (7) 
Ol=--+l o 2 = •  ON=--+I 1 

N 

~ o i = M  
1 
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which transfers the counting problem of evaluating N(R) into the planar 
restriction Y.~ag = M  on allowable spin configurations. Although Z(N,  M, j )  
could be evaluated in this form, it is much simpler to use the partition 
function Z(N, I~, J) for an Ising system with fixed external magnetic field 
H----I~kT, rather than the ~ of equation (7) where the magnetization M is 
fixed. The two partition functions are related to each other in this way 

N 
Z ( N , ~ , j ) =  ~ eM~'~(N,M,j) 

M= --N 

= X X 
ffl = -4-1 ~2=-----1 

(8) 

)1 �9 . .  ~ exp ~ o i exp j (oi~ 
a N =  --1 

(9) 

with the unconstrained sums over the a i in Z much easier to calculate than 
the constrained sums in ~;. Whereas ~(N,  M, j )  corresponds to the kernel 
K(z, t)(z=z b -z~, t=tb--ta) in space-time, Z(N,I~, j)  corresponds to the 
same free particle kernel expressed in momentum-time. To see this recall 
that in the chessboard problem, the usual integral relation connecting 
K(z, t) and K(p, t) is to be replaced by a sum over discrete steps of 
Z b --Z a =M/z, 

g ( p , t )  = X e-- ip(zb--za)g(Zb--Za, t )  (10)  

Z b - - Z  a 

Comparing equations (8) and (10), one sees the correspondence 

Z ( N , # , j ) - ~ K ( p , t )  (11) 

with 

M ~ : - - i P ( Z b - - Z a )  ( 1 2 )  

or, since M=(z b -za)/e,  

~=- ipe  (13) 

Now in the chessboard problem, K(z b --Za, t b --ta) is the sum of four 
separate K 's: K+ +, K_ _, K_ +. The first of these, K+ +, is the probability 
amplitude for starting at zat a with positive velocity + c  and ending o n  Zbt b 
with positive velocity + c, the remainder of the K ' s  defined in a similar 
fashion. To each of these K ' s  in space-time, there corresponds, according to 
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equation (10), an amplitude in momentum-time, e.g., K + + ( z , t ) ~  
K++(p, t). These latter four kernels can be separately calculated from the 
Ising model by leaving unspecified the spins a I and o u in equation (8), 
thereby calculating Zo~N( N, i~, j), 

Zo,oN(N,I~,J)= ]~ "'" 2 exp ~ ffiWj 2 (~ 
o2=• ON_I=~+I l 

(14) 

Kramers and Wannier (1941) first showed how to calculate Zo, ox in closed 
form, using the transfer matrix technique. Let the 2 • 2 matrix % be defined 
by 

~J~( gi, oi+ l)=exp[ I I~(oi +Oi+ l )+J(oiOi+ l -1 ) ]  (15) 

Then equation (14) becomes I 

Zol.u=- X "'" X %(OtOZ)%(OZOS)'''%(aN-,OU) (16) 
a z = ~ l  a~v_l= +~1 

Diagonalizing the matrix ~(oto2) yields two eigenvalues A+ and corre- 
sponding eigenvectors ~_+(01) , 0~+_(02) which are orthogonal and assumed 
normalized, 

X ' i (  e )d~j( a )=Sij (17) 
ff 

In terms of these, the matrix elements of the transfer matrix ~ are 

~(etez)=h+d~+(ot)e~+(ez)+A_ag_(ffl)dg_(e2) (18) 

and a sum over the intermediate spin 02 in the product of the first two 
matrices gives the result 

Z ~ (Olff2)~ (0203)= ~2+*+ (Orl)r (03)'~ ~2 CI)-(01 ) r  03 ) ( 1 9 )  
o2=~1 

Therefore, summing on all spins from 2 to N -  1 in equation (16) yields 

Zo,o N =X~-r (Or)O- (o,,) ~ +h+ (20) 

~Equation (16), to be precisely correct, should contain the factor exp [/~(ol +oN)/2]. However, 
since this term goes to unity in the l i m i t / ~  -ipe, e~O, it is omitted here. 
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Eigenvalues ?t_ are solutions to 

l e t - x  e-2J =0  (21) 
e-2J e-~ - X  

Applied to the chessboard problem, e -2 j  __, _ ie, #--, - ipe,  and, anticipating 
the final limit e~0,  it is sufficient to set e "--, 1-ipe, giving the matrix 
elements for %(o l, %), 

(+) (-) 
56= (+)  1- ipe  --i i  (22) 

(--)  --ie l+ipe 

The off-diagonal elements - i e  correspond to the corners in Figure 1, and 
introduce the phase = - i e  as given in equation (1). Diagonal elements, 
corresponding to no cornering, introduce the phases 1 ~-ipe for •  trajecto- 
ries. The eigenvalues )t of ~(olo2)  are 

with 

X + = 1 +-ieE (23) 

E = ( l + p Z )  '/2 (24) 

the relativistic free particle energy in the system of units m = c = 1. Eigenvec- 
tors for h + are found to be 

~ + ( o =  + 1)=[�89 1/2 (25) 

+ ( o = - -  1 ) = -  [�89 +p/E)]  1/2 (26) 

and those for h_  are given by 

�9 _ ( o =  + 1)= [�89 +p/E)]  1/2 (27) 

d~_ (o=- -1 )= [ � 89  l/z (28) 

The eigenvector ~ + ( o =  + 1) is the probability amplitude at any time, or at 
any step along the t axis, t=t  a +ne for the particle to have the velocity +c  
in the eigenstate X + = 1 +ieE. Similarly q~+(o= - 1) is the probability 
amplitude at any time for the particle to have the velocity - c  in the 
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eigenstate X +. For p=0 ,  all four probabilities obtained from equations 
(25)-(28) are seen to be equal to 1/2. This is consistent with the behavior of 
the Ising model spins in zero magnetic field /, [ p = 0  implies / ,=0 from 
equation (13)], when an up spin must be as likely as a down spin. Using 
these eigenvalues and eigenvectors in equation (20) for Zoo. o,,, and setting 
N-* t/e, I ~  --ipe,(l +-i~E)t/~ ~e+-iEt, we find 

K++(p, t )=l ( l+p/E)e- ie t+�89  (29) 

K__(p , t )= �89189  iEt (30) 

K_ + (p ,  t) = (1 /2E)e - iE t  - -  ( 1 / 2 E ) e  mt (31) 

=K+_(p, t )  (32) 

the last relation being obvious from fight-left symmetry. Note that in 
contrast to the standard thermal problem in which eigenvalues X + are real, 
so that one need take only the larger root in the limit N--, oe, in the present 
case both roots contribute, ()~ _+)N= e _+iet, one ()t _) giving positive energy 
solutions, the other (X +) negative energy solutions. Inspection of equations 
(29)-(32) shows that negative energy solutions are obtained from those for 
positive energy by replacing E by - E ,  so that the kernels K~j could be 
neatly expressed as a 2 • 2 matrix, which for positive energy has diagonal 
elements �89 •  and 1/2E for off-diagonal elements. 

In the high-energy limit, p>>l, E--,p, and K++(p, t )~e  -~pt, 
K__(p, t ) - ,e  ipt and K + _ ~ 0 .  This limit corresponds to vanishing off- 
diagonal elements of the transfer matrix in equation (22). Since it is these 
which produce corners in the chessboard model, only straight line trajecto- 
ries z =  --+t result for E--p, as is evident from 

K++(z,t)=f~PeipZe-iP'=8(z--t)  and K__(z , t ) - -8(z+t) .  

The corresponding Ising analogy of this situation is N spins with such 
strong interactionj (e -aj  --,0) that if the first spin is + ,  all the remainder 
are also + ,  or if the first spin is - ,  the remainder are also - .  

The constants h, rn, c may be reinstated by replacing t in the above 
relations by t/(h/rnc 2) and p by p/mc. Then E = [ 1 +p2/(rnc 2)] 1/2 is the 
energy in units of rnc 2. The kernels in space-tirnz, K(z, t) can be obtained 
from the K(p, t) given above by Fourier integration. The sum of all four 
kernels is 

K(  p , / )  = (1 -~- 1 /E  )e - i E t  ' t-  (1 -- 1 /E  ) e  l e t  (33) 
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In the nonrelativistic limit, E=( l+p2) l /2~ l+p2 /2 ,  and in this limit 
K(p,  t) tends to 

or, in ordinary units 

K( p , t) ~ 2e-ite -ipZt/2 (34) 

K( p, t) ~2e  -i"c2t/~e -ipZt/2mh (35) 

Except for the factor exp(-imc2t/h),  this kernel K(p,  t) [and its Fourier 
transform K(z, t)] is correct for a nonrelativistic particle. Had we chosen the 
phase factor introduced at a corner, equation (1), to be ie rather than - ie ,  
the four kernels would be the same as given in equations (29)-(32), except 
for K+ _ (and K_ +), which would be the negative of that given in equation 
(32). Then the nonrelativistic limit would come out as in equation (35) 
above, but with the opposite signs in the exponents. 

EQUIVALENCE WITH THE DIRAC EQUATION 

To show that the momentum space kernels given by equations (29)-(32) 
are the same as those obtained from the Dirac equation, we consider that 
equation for a free particle with momentum p, energy E, in the system of 
units h = m = c =  1, 

(azp+fl)~t'( p ) =E~I'( p ) (36) 

To conform to the chessboard problem we choose a representation in which 
the velocity operator dz/dt = a z is diagonal with eigenvalues +- 1, 

( oz 0 ) (37) 
az = 0 - %  

B--( ~ o') 
Eigenstates of dz/dt in this chiral representation are 

a?t,_+ = -+,t,_+ 
or 

1 

'I'+ =2  -1/2 0 
0 
1 

(39) 

(40) 
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and ~t'_ =fl~I'+, 

0 

~t,_ = 2-1/2 --1 (41) 
--1 

0 

The states 'IP• correspond to the --+c paths in the chessboard problem. 
Starting at t = 0 with the state 't'+(0) (+  c trajectory), in a small time interval 
it evolves into ~t,+(At), 

'~+( At)=[1--i(paz +/3)At]al+(O) (42) 

Using equations (36)-(41) this becomes 

~t'+(At)= (1--ipAt)~t'+(O)--iAt~_(O) (43) 

Alternatively, the state 't~_(0) ( - c  trajectory) evolves in time At into 

~_ (At) = (1 +ipAt)qt_(O)--iAt~+(O) (44) 

For either choice of initial trajectory, putting At=e, 

= 

Comparison of equation (45) and equation (22) shows that the initial states 
are transferred in time e by the same transfer matrix as in the Ising model 
version of the chessboard problem. The off-diagonal matrix elements - i e  in 
equation (42) are clearly due to the mass term/3 in the Dirac equation- 
eigenstates of a z are not eigenstates of the energy since/3 anticommutes with 
OLZ, 

For a finite time interval t, t=Ne, N-fold iteration of the transfer 
matrix in equation (45) would define precisely the same problem treated 
earlier, and therefore yield the same kernels Kij(p, t) as previously found. 

More conventionally, these kernels may be obtained by expanding ~p_+ 
in terms of energy-momentum eigenstates of the free particle in this chiral 
representation (Bjorken and Drell, 1964). Positive energy solutions, E =  (1 + 
]92) 1/2 are 

1 
0 

qq =N _ l /E+p (46) 

0 
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and 

% = N  

while negative energy solutions are 

% = g  

and 

0 
- 1 / E + p  

0 
1 

1/E+p 
0 
1 
0 

(47) 

(48) 

0 
1 

~4 ----N 0 (49) 
- 1 / ~ + p  

where E -  I E I, and where the common factor N is given by 

N =  [�89 +p/E )]1/2 (50) 

To calculate one kernel, say K+_(p, t), we need the probability amplitude 
that a particle of momentum p, in the state ~+  at t=O will be found in the 
state 'I t_ at time t, K+_(p,t)=(gl_(O),'t'+(t)). To obtain this scalar 
product, both states g/• can be expanded in the free particle solutions, 

�9 +(t)=(Cl+_~l-FC2+~2)e-iet+(C3+_qz3-FC4+_~4)e iEt (51) 

The coefficients are easily seen to be 

C3+ = C4+ = �89 --p/E) '/2 (52) 

C 3 _ = C 4 _  ~. - �89 ( 1 + p / E  )'/z (53) 

c,  + = c2+ = �89 + p / e  )l/2 (54) 

c1_ = c2_ = �89  (55) 

They are arranged in sequence so as to correlate with the four equations 
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(25)-(28) for the eigenvectors in the transfer matrix problem. Thus, for 
example C3+, Ca+ in equation (52) are probability amplitudes for a + c  
trajectory in a negative energy state, identical in meaning and value (except 
for a normalization factor 21/2) to the eigenvector ep+(o= + )  in equation 
(25). 

The kernel K + _ ( p ,  t) expressed in terms of the C's  is 

K+ _( p ,  t ) =  (C l+C , _ + C2+C2_)e - ie t  + (C3 + C3 - + C4+C4_)eiEt 

(56) 

or 

K+ _ ( p,  t)  = ( 1 / 2 E ) e  - i e t _  ( 1 / 2 E ) e  iet (57) 

the same as equation (31) calculated via the transfer matrix technique. The 
same correspondence is easily seen to hold for K+ + and K_ _. 

CONCLUSION 

Feynman's chessboard problem can be solved as an Ising model, using 
the transfer matrix technique of statistical mechanics. The 2X 2 transfer 
matrix represents the infinitesimal time evolution operator for the two 
eigenstates of the velocity operator. 
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